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Optical gap solitons in nonresonant quadratic media
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We demonstrate an important role of the process of optical rectification in the theory of nonlinear wave
propagation in quadratically nonlinear x(®] periodic optical media. We derive a novel physical model for
gap solitons iny(® nonlinear Bragg grating$S1063-651%99)11105-X]

PACS numbe(s): 41.20.Jb, 42.65.Ky, 42.65.Jx, 42.65.Tg

As has been recently demonstrated, large optical nonlin- We consider propagation of an optical pulse in a periodic
earities can be generated in noncentrosymmetric media byedium with a quadratig(?) nonlinear response. To derive
means of the so-calledascading effectddue to parametric the coupled-mode equations for the wave envelope, we start
wave mixing under the condition of nearly phase-matchedrom Maxwell's equation,
second-harmonic generation and other parametric processes
[1]. It has been also shown that cascaded nonlinearities can
support spatial optical solitoi&] and also different types of
gap solitons in periodic Bragg gratings with a quadrétic
x'?)) nonlinear responsgs]. whereV? stands for the Laplaciam, is the speed of light in

Importantly, when an input electromagnetic wakteat  vacuum, E is the x element of the electric fieldE
frequencyw is launched into a noncentrosymmetric material, = E(z,t)e,, and the quadratic nonlinearty is represented by a
it generates also a quasistatic electric figdd dc field at  (on50r element@=y@ . We assume that(z, ) is a peri-
frequency zero. This effect is known aptical rectification  qjc function ofz, so it can be presented in a general form as
and it is usually described by a contribution to the medium, £qurier series
nonlinear polarizationP of the form PY= eyxij(0;w, '
—0)E;(0)E} (w), where y;ix(0;w,— ) is the nonlinear R A A
opticall susceptibility descjribing optical rectificatiof]. €(z,0)=€e(w)| 1+ 21 €;e?%7+ 21 ee @ (2
Such an induced dc field changes a refractive index via the = =
linear electro-optic effect. As has been recently shown byyhered= =/k is the period of the Bragg-grating structure.
Bosshardet al. [5], both theoretically and experimentally, Deriving the couple-mode equations below, we assume the
the combined processes of optical rectification and the lineagase of ashallow grating i.e., that the conditios;<1 holds.
electro-optic effect lead to aadditional, nonresonanton-  Additionally, we may consider a periodic modulation of the
tribution into an effective nonlinear refractive index of non- nonlinear quadratic susceptibility taking®(z)= x®(z
centrosymmetric materials due to cascading processes. 4 d) as a periodic function with the same periicHowever,

The effect of optical rectification issually neglectedn  we have verified that this effect does not modify quantita-
the theory of quadratic solitons because the equation for thgyely the analysis and results presented below, so that we
dC f|e|d can be integrated eXpIiCitIy, Ieading toa nonresonanéonsider the Simp|est case Wh/eﬁ) is constant.

Contributiorl into the effective cubic nonlinearity of the non- For a periodic Structure, the Bragg reﬂection |eads to a
linear Schrdinger (NLS) equation derived by means of the strong interaction between the forward and backward waves
asymptotic technique in the approximation of cascaded nongt the Bragg wave numbed~k. To derive the coupled-

linearities(see, e.g., Re{6]). However, for the propagation mode equations for the wave envelopes, we consider the

of spatio-temporal multidimensional optical pulses in non-asymptotic expansion for the electric field in the form
resonant quadratic media, such a reduction is no longer pos-

sible and, as a result, the multidimensional NLS equation E=(E,e**+E_e *?)e ¢!+ c.c+ECO+E(0e
becomes coupled to a dc fie]d], similar to the integrable Loy o -
case of the Dawey-Stewartson equatiéh +E(O2e 2 (B0 A2

In this_paper we shO\_/v t_hat the physical situation is q_uali- +E@-2g2kzyg—2i0t L ¢ o 3)
tatively different for periodic quadratically nonlinear optical
media. We demonstrate that coupling between the forwarevhereE. =E_.(z,t) are slowly varying envelopes of the for-
and backward waves in one-dimensiorshallow Bragg ward(+) and backward {) waves. The frequency satis-
gratings with a quadratic nonlinearity is accompanied by afies the dispersion relation for linear wavedk®= w?e(w).
coupling to the induced dc field that appears within the sam®ue to quadratic nonlinearity, the expansi®) includes
approximation and cannot be eliminated by integration. Thidigher-order terms at the frequencyw2and the zero-
effect has been overseen previously, but it leads to a novdtequency term, so that the slowly varying functiogg"™
physical model for gap solitons in quadratic media which we=E(™™(z t) are defined as nonlinear amplitudes of the
introduce and analyze here. (n,m)-order harmonice ™~ "*teMk2
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To derive the equations for the coupled-mode theory, wea particular form of the conventional model g gap soli-
follow the standard procedure of the asymptotic theory fortons[3] valid for a nonresonant limit of a large mismatch.
nonlinear wave$9] and introduce a small parameterac- In the case of a single wave propagating in a homoge-
cording to the relationganother choice of the scaling is dis- neous medium, the induced dc field is explicitly given by the
cussed beloWwE.~O(e), JE. /dt~dJE. [dz~0O(e%), and  host wave[6]. The similar result is valid for the case of a
6]"‘0(82). Then, substituting the expansi¢®) and(3) into  deep grating described by the modulations of the Bloch
Eq. (1), we compare the terms of the same order in front ofwaves, but not for a shallow grating we discuss here. If we
the coefficient®"“'ei™kZ At the orders (2,0), (2;2),and  assume the scalingk-. /9z~0O(&?) (as usually done in the
(0,=£2), we obtain, respectively, analysis of higher-dimensional systems such as the Dawey-
Stewartson equatiorand E(©9 of order ¢4, then the cou-

@ pling between the dc wave and host wave can be neglected.

p2o_ _ X

2
e(2w) E.E-~O(%), However, for isotropic scaling as presented here, the effect
of the dc wave is directly included in Eg&l) and(5). Inter-
w2y action between the dc field and fundamental harmonics has
EG*2)=— E2~0(&?), also been discussed in RE8], however in that analysis, the

[c?k*— w?e(20)] dc field appears as a cascading effect and its velocity is al-

most the same as the phase velocity. We notice that in our
case, the dc field is essentially excited by quadratic nonlin-
earity and no assumption is required for the velocity.

We are looking for spatially localized solutions of Egs.
where we have assumed nonresonant interaction with theh—(6) for bright gap solitonsn the form
second harmonic, i.ew?e(2w) # c?k?.

At the orders (1) and (0,0) we obtain a system of
coupled nonlinear equations,

(2) 52

N X
E(02)_ _ - ?(E’;E;)~O(86)v

E, = AflIZf(é«)ei[ﬂl({)*ﬂwg/Z],

E_ :A1/2f(g)ei[ﬁg(f)*ﬂt*gm], 7)
J J
It +vg£) E.+«kE_ where{=z—Vt; the functionsf () and 8, A(¢), and the pa-
rameterd), V, A are assumed to be real. The paramgtisr
+(A|E,|?+B|E_|?>+CE®Y))E, =0, (4 the argument of the coupling parameteyi.e., x=|«|e'?.
Substituting the ansatZ) into Eqg. (6), we obtain

J J
i(__Ug_) E,"’K*EJr l)2V2D 1
no ECI(g)=- 2—2(A+K)f2(g),
+(B|E,|2+A|E_|2+CECME_=0, (5 (v5—V?)
21 2 52 and, therefore, the contribution of the dc field should vanish
<—2——2—2)E(0’0)+D—2(|E+|2+|E|2)=0, (6) atv=o0.
dzc wvg dt ot From Egs.(4) and (5), we set the parameteA as

\/(vg—V)/(ug+V), and then obtain a system of coupled

where v (0)=dw/dk, vo=0v4(0), k=w?e(w)ef Yw), i =g — =9+
A=2(X(§))2w4{f(w)[c2k2—wzqe(Zw)]}‘l, o equations forf, §_=6,—6,, and 0, =6+ 65,

—4(x 2w f(0)e(20)]7 !, C=20*xPf (w), and D df )

=—2x®/c? with f(w)=[w?e(w)]’. If we keep the trans- d—§=uf sin6_, (8)
verse coordinatesx(y), Eq. (6) should also include the

transverse Laplacian in the same order. Systém(6) de- do

scribes the interaction between the forward and backward —— +v—2u cosh_+ 6f2=0, (9)
waves coupled to a dc wave induced via the rectification d¢

effect. Including the optical Kerr effect, we obtain the same

system of the coupled equations as Ed$.and(5) but with do., + EJF 2= 0 (10)
the modified constanta andB. dZ vy 7=

An important issue is a link between our modé)—(6)
and the previous studies of gap solitons in a periodic mediavhere u=|«|/(vi— VA2 v=—(204,0)/(v;—V?), and
with a nonlinear quadratic response. As follows from Egs.

(4)—(6), the induced dc field has the orderdt given by the (v2+V2)_
assumption of a shallow grating. In spite of the fact that the o= —2(vS—V2)71’2 3—2 :
dc waveE(%9 itself is of a higher orderin comparison with (vg=V?)

the forward and backward scattering waves, it becomes _
coupled to the fieldE, andE_ in the main order On the n=—4(v5—V?) ¥ VA,
other hand, if we assume a much stronger dc field., of

order ofO(1), as in thecase of a deep gratifgthe system 5 VzngD 5 V2u§CD

(4)—(6) becomes decoupled and the dc wave satisfies an in- A=A-———, B=B-—5—r.
dependent equation. As a result, the madik(6) reduces to (vg—V9) (vg—V9)
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We notice that in the problem under consideration, wesingularity providedV—uv,, changing the character of the
should assumgV|<vy and|v|<2u. dependence of the soliton parameters and the system con-
Similar to the analysis presented in REIQ], from Eqgs. served quantities oW. The recent stability analysis of the

(8)-(10) we obtain a closed differential equation for the conventional gap solitond4] revealed the existence of two
function 6_ in the form of the double sine-GorddibSG)  types of instabilitiespscillatory andtranslational The most
equation. The DSG equation can be integrated, and its locaimportant, translational instability appears for lakgeso that
ized solutions are two types &fnksandantikinks[11]. Us-  the induced dc field is expected to have a strong effect on the
ing the relevant solutions, we can then find soliton stability. In fact, we anticipate that all gap solitons for
vo<V<wv4 may become unstable. However, the detailed dis-

D) [ T (4ul H[1—(vI2m)?] vz cussion of the stability is beyond the scope of the present
= 2 2\ — study. It is also worth mentioning that in the limit—uv,
coshvau™=v)=(v12u) when the coefficients grow, the transverse effect in &y.
where the signst stand for the cased>0 and §<0, re- becomes important and should be included to compensate
spectively. Function®,; and ¢, are then obtained as the singularity. .
Finally, we present the system invariants of the model
0_=6,—0, defined by Eqgs(4)—(6). Similar to some other models, we

. are not able to present Eg&l)-(6) in a Hamiltonian form
[2pm— Vt 1 Vaus—v directly, and therefore we introduce an auxiliary functign
2uty an > ¢ ’ through the relationad¢/dz=ECO—v3D(|E,|+|E_|?),
(11) where a?=v3D/C. Then, we define the second canonical
variable asw=v§a¢/¢9t and show that Eqg4)—(6) can be
written as a Hamiltonian system

vV
0,=0,+0,=— v—(
q

dnug \/Z,uiv Vau2—v?
i—5 tan [ 2,u1vtan 5 {
12 : , .
with the following Hamiltonian:

where(C.. are integration constants. In order to obtain solu-
tions for gap solitons, we restrict the possible angle variable JM |Ug , P
dzy =
2

o o SH oy SH JE.  H
x5 syt ep ot ggr’

by the domain, & #_<2. The solution obtained from Eq. H= —¢— +KkEIE_+Kk*E.E*
(11) describes a two-parameter family of gap solitons, spa- gz
tially localized waves in the Bragg gratings, which are simi- iv
lar to the gap solitons of the conventional coupled-mode + 3
theory. Actually, by renormalizing the variables &s— 2
*o, B—=*1, C—0, [k|-1, vy—1, V—u, Q— A

+1-0v%c0sQ, C.—(12+12)w*(4ova?)(1—vd)mw + _(|E+|4+|E|4)+# E_E,
+2¢, we can demonstrate that the solution is essentially the 2

same as that earlier obtained in Relf2]. However, the ef- 5

fect of the dc wave is included in the parametérand 7. n ac&_(:(|E+|2+|E_|2)]' (13)

— 0

*
- - +
E% 9z = Jz EZ Jz E- 0z

JE, JEY | JE_ aEt)

2

Similar to the case of conventional gap solitdds8], in
the casév|>2u, spatially localized solution of Eq$8) and
(9) do not exist. Instead, the kinks of the DSG equation forwhereK=A+v§CD and §:B+USCD. Other integrals of

0_ give solutions fordark gap solitongsee alsd13)), lo- motion of the systeni4)—(6) are the field momentum,
calized waves on nonvanishing backgrounds,
J
_p0? }

Jz

—o0

+oo E* E*
- 2_u(m_ ) W72 costiog) + 1 p:j dz[(E+a&—;+E_&a—Z
lol\2u ) J(Jv|r2p)cosi(ol)— 1"

the total number of the forward and backward waves, and an
independently conserved number of the dc waves,

B
=4 ——1. +oo +o0
T=4N 2, N= [ e e ), No- [ azy.

where

Upper and lower signs correspond to two types of such soli-

tons, with the maximum intensitiarge or smallerthan the  Therefore, in sharp contrast to the conventional coupled-

background intensity. mode theory of gap solitons, the moddl)—(6) possesses
The effective renormalization of the coefficients due toone additional integral of motion, and it has no analogy with

the induced dc field seems extremely important for the soliother soliton-bearing nonintegrable models where the soliton

ton stability. Indeed, whem,<vy the coefficients have a stability has been investigated so far.
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In conclusion, we have demonstrated the importance ofo an induced dc field, and we have found the analytical
the optical rectification effect in the theory of gap solitonssolutions for moving bright and dark gap solitons.
Inear respanse. We have derived, fo the first e to our _Takeshilizuka acknowiedges the hospitaiy of the Opi-
knowledge, a novel model of the coupled-mode theory forcal Suenc_es Centgr {;md the_ support of the Japanese M|.n|stry
optical gap solitons in quadratically nonlinear Bragg gratings>f Education. Yuri Kivshar is a member of the Australian
that describes a coupling of the forward and backward waveEhotonics Cooperative Research Center.

[1] For an overview, see G. Stegeman, D. J. Hagan, and L. Torner[6] A. G. Kalocsai and J. W. Haus, Phys. Rev48, 574(1994.

Opt. Quantum Electror28, 1691(1996. [7] M. J. Ablowitz, G. Biondini, and S. Blair, Phys. Lett. 236,
[2] For an overview, see Yu. S. Kivshar, Advanced Photonics 520(1997.
with Second-Order Optically Nonlinear Processeslited by [8] See, e.g., M. Boiti, J. J. Leon, L. Martina, and F. Pempinelli,
A. D. Boardmaret al. (Kluwer Academic, Dordrecht 1998p. Phys. Lett. A132 432(1988.
451. [9] A. Jeffrey and T. Kawaharasymptotic Methods in Nonlinear
[3] Yu. S. Kivshar, Phys. Rev. B1, 1613(1995; Yu. S. Kivshar Wave TheoryPitman, Boston, 1982

et al, Int. J. Mod. Phys. B, 2963(1999; C. Conti, S. Trillo, [10] D. L. Mills and S. E. Trullinger, Phys. Rev. B6, 947(1987).
and G. Assanto, Phys. Rev. LeR8, 2341(1997; Opt. Lett.  [11] See, e.g., O. M. Braun and Yu. S. Kivshar, Phys. R, 1
22, 445 (1997; T. Peschel, U. Peschel, F. Lederer, and B. (1998.

Malomed, Phys. Rev. B5, 4730(1997); H. He and P. D. [12] A. B. Aceves and S. Wabnitz, Phys. Lett.141, 37 (1989; D.

Drummond, Phys. Rev. Let#Z8, 4311 (1997; C. Conti, G. N. Christodoulides and R. I. Joseph, Phys. Rev. 168t.1746

Asanto, and S. Trillo, Opt. Let22, 1350(1997); A. Arraf and (1989.

C. M. de Sterke, Phys. Rev. &B, 7951(1998. [13] J. Feng and F. K. Kneull, Quantum Electron29, 590
[4] M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, Phys. (1993.

Rev. Lett.9, 446 (1962. [14] I. V. Barashenkov, D. E. Pelinovsky, and E. V. Zemlyanaya,
[5] C. Bosshard, R. Spreiter, M. Zgonik, and P.rher, Phys. Phys. Rev. Lett80, 5117(1998; A. De Rossi, C. Conti, and

Rev. Lett.74, 2816(1995. S. Trillo, ibid. 81, 85(1998.



