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Optical gap solitons in nonresonant quadratic media
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We demonstrate an important role of the process of optical rectification in the theory of nonlinear wave
propagation in quadratically nonlinear@or x (2)# periodic optical media. We derive a novel physical model for
gap solitons inx (2) nonlinear Bragg gratings.@S1063-651X~99!11105-X#

PACS number~s!: 41.20.Jb, 42.65.Ky, 42.65.Jx, 42.65.Tg
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As has been recently demonstrated, large optical non
earities can be generated in noncentrosymmetric media
means of the so-calledcascading effects, due to parametric
wave mixing under the condition of nearly phase-match
second-harmonic generation and other parametric proce
@1#. It has been also shown that cascaded nonlinearities
support spatial optical solitons@2# and also different types o
gap solitons in periodic Bragg gratings with a quadratic~or
x (2)) nonlinear response@3#.

Importantly, when an input electromagnetic waveE at
frequencyv is launched into a noncentrosymmetric materi
it generates also a quasistatic electric field~or dc field! at
frequency zero. This effect is known asoptical rectification,
and it is usually described by a contribution to the medi
nonlinear polarizationP of the form Pi

05e0x i jk(0;v,
2v)Ej (v)Ek* (v), where x i jk(0;v,2v) is the nonlinear
optical susceptibility describing optical rectification@4#.
Such an induced dc field changes a refractive index via
linear electro-optic effect. As has been recently shown
Bosshardet al. @5#, both theoretically and experimentally
the combined processes of optical rectification and the lin
electro-optic effect lead to anadditional, nonresonantcon-
tribution into an effective nonlinear refractive index of no
centrosymmetric materials due to cascading processes.

The effect of optical rectification isusually neglectedin
the theory of quadratic solitons because the equation for
dc field can be integrated explicitly, leading to a nonreson
contribution into the effective cubic nonlinearity of the no
linear Schro¨dinger ~NLS! equation derived by means of th
asymptotic technique in the approximation of cascaded n
linearities~see, e.g., Ref.@6#!. However, for the propagation
of spatio-temporal multidimensional optical pulses in no
resonant quadratic media, such a reduction is no longer
sible and, as a result, the multidimensional NLS equat
becomes coupled to a dc field@7#, similar to the integrable
case of the Dawey-Stewartson equation@8#.

In this paper we show that the physical situation is qu
tatively different for periodic quadratically nonlinear optic
media. We demonstrate that coupling between the forw
and backward waves in one-dimensionalshallow Bragg
gratings with a quadratic nonlinearity is accompanied by
coupling to the induced dc field that appears within the sa
approximation and cannot be eliminated by integration. T
effect has been overseen previously, but it leads to a n
physical model for gap solitons in quadratic media which
introduce and analyze here.
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We consider propagation of an optical pulse in a perio
medium with a quadraticx (2) nonlinear response. To deriv
the coupled-mode equations for the wave envelope, we s
from Maxwell’s equation,

c2¹2E2
]2

]t2
@ ê~z,i ] t!1x (2)E#E50, ~1!

where¹2 stands for the Laplacian,c is the speed of light in
vacuum, E is the x element of the electric field,E
5E(z,t)ex, and the quadratic nonlinearty is represented b
tensor elementx (2)5xxxx

(2) . We assume thatê(z,v) is a peri-
odic function ofz, so it can be presented in a general form
a Fourier series,

ê~z,v!5e~v!S 11(
j 51

`

e je
2ikz1(

j 51

`

e j* e22ikzD , ~2!

whered5p/k is the period of the Bragg-grating structur
Deriving the couple-mode equations below, we assume
case of ashallow grating, i.e., that the conditione j!1 holds.
Additionally, we may consider a periodic modulation of th
nonlinear quadratic susceptibility takingx (2)(z)5x (2)(z
1d) as a periodic function with the same periodd. However,
we have verified that this effect does not modify quanti
tively the analysis and results presented below, so that
consider the simplest case whenx (2) is constant.

For a periodic structure, the Bragg reflection leads to
strong interaction between the forward and backward wa
at the Bragg wave numberkB'k. To derive the coupled-
mode equations for the wave envelopes, we consider
asymptotic expansion for the electric field in the form

E5~E1eikz1E2e2 ikz!e2 ivt1c.c.1E(0,0)1E(0,2)e2ikz

1E(0,22)e22ikz1~E(2,0)1E(2,2)e2ikz

1E(2,22)e22ikz!e22ivt1c.c., ~3!

whereE65E6(z,t) are slowly varying envelopes of the for
ward ~1! and backward (2) waves. The frequencyv satis-
fies the dispersion relation for linear waves,c2k25v2e(v).
Due to quadratic nonlinearity, the expansion~3! includes
higher-order terms at the frequency 2v and the zero-
frequency term, so that the slowly varying functionsE(n,m)

5E(n,m)(z,t) are defined as nonlinear amplitudes of t
(n,m)-order harmonicse2 invteimkz.
7148 ©1999 The American Physical Society
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To derive the equations for the coupled-mode theory,
follow the standard procedure of the asymptotic theory
nonlinear waves@9# and introduce a small parameter« ac-
cording to the relations~another choice of the scaling is dis
cussed below! E6;O(«), ]E6 /]t;]E6 /]z;O(«3), and
e j;O(«2!. Then, substituting the expansion~2! and~3! into
Eq. ~1!, we compare the terms of the same order in front
the coefficientse2 invteimkz. At the orders (2,0), (2,62), and
(0,62), we obtain, respectively,

E(2,0)52
2x (2)

e~2v!
E1E2;O~«2!,

E(2,62)52
v2x (2)

@c2k22v2e~2v!#
E6

2 ;O~«2!,

E(0,62)52
x (2)

2c2k2

]2

]t2
~E6* E7!;O~«6!,

where we have assumed nonresonant interaction with
second harmonic, i.e.,v2e(2v)Þc2k2.

At the orders (1,61) and (0,0) we obtain a system o
coupled nonlinear equations,

i S ]

]t
1vg

]

]zDE11kE2

1~AuE1u21BuE2u21CE(0,0)!E150, ~4!

i S ]

]t
2vg

]

]zDE21k* E1

1~BuE1u21AuE2u21CE(0,0)!E250, ~5!

S ]2

]z2
2

1

v0
2

]2

]t2D E(0,0)1D
]2

]t2
~ uE1u21uE2u2!50, ~6!

where vg(v)5dv/dk, v05vg(0), k5v2e(v)e1f 21(v),
A52(x (2))2v4$ f (v)@c2k22v2e(2v)#%21, B5
24(x (2))2v2@ f (v)e(2v)#21, C52v2x (2)f 21(v), and D
522x (2)/c2 with f (v)[@v2e(v)#8. If we keep the trans-
verse coordinates (x,y), Eq. ~6! should also include the
transverse Laplacian in the same order. System~4!–~6! de-
scribes the interaction between the forward and backw
waves coupled to a dc wave induced via the rectificat
effect. Including the optical Kerr effect, we obtain the sam
system of the coupled equations as Eqs.~4! and~5! but with
the modified constantsA andB.

An important issue is a link between our model~4!–~6!
and the previous studies of gap solitons in a periodic me
with a nonlinear quadratic response. As follows from E
~4!–~6!, the induced dc field has the order ofe2, given by the
assumption of a shallow grating. In spite of the fact that
dc waveE(0,0) itself is of a higher orderin comparison with
the forward and backward scattering waves, it becom
coupled to the fieldsE1 andE2 in the main order. On the
other hand, if we assume a much stronger dc field@e.g., of
order ofO(1), as in thecase of a deep grating#, the system
~4!–~6! becomes decoupled and the dc wave satisfies an
dependent equation. As a result, the model~4!–~6! reduces to
e
r

f

he

rd
n

ia
.

e

s

n-

a particular form of the conventional model ofx (2) gap soli-
tons @3# valid for a nonresonant limit of a large mismatch

In the case of a single wave propagating in a homo
neous medium, the induced dc field is explicitly given by t
host wave@6#. The similar result is valid for the case of
deep grating described by the modulations of the Blo
waves, but not for a shallow grating we discuss here. If
assume the scaling]E6 /]z;O(«2) ~as usually done in the
analysis of higher-dimensional systems such as the Daw
Stewartson equation! and E(0,0) of order «4, then the cou-
pling between the dc wave and host wave can be neglec
However, for isotropic scaling as presented here, the ef
of the dc wave is directly included in Eqs.~4! and~5!. Inter-
action between the dc field and fundamental harmonics
also been discussed in Ref.@6#, however in that analysis, th
dc field appears as a cascading effect and its velocity is
most the same as the phase velocity. We notice that in
case, the dc field is essentially excited by quadratic non
earity and no assumption is required for the velocity.

We are looking for spatially localized solutions of Eq
~4!–~6! for bright gap solitonsin the form

E15D21/2f ~z!ei [u1(z)2Vt1g/2],

E25D1/2f ~z!ei [u2(z)2Vt2g/2], ~7!

wherez5z2Vt; the functionsf (z) andu1,2(z), and the pa-
rametersV, V, D are assumed to be real. The parameterg is
the argument of the coupling parameterk, i.e., k5ukueig.
Substituting the ansatz~7! into Eq. ~6!, we obtain

E(0,0)~z!52
v0

2V2D

~v0
22V2!

S D1
1

D D f 2~z!,

and, therefore, the contribution of the dc field should van
at V50.

From Eqs. ~4! and ~5!, we set the parameterD as
A(vg2V)/(vg1V), and then obtain a system of couple
equations forf, u2[u12u2, andu1[u11u2,

d f

dz
5m f sinu2 , ~8!

du2

dz
1n22m cosu21d f 250, ~9!

du1

dz
1

Vn

vg
1h f 250, ~10!

wherem5uku/(vg
22V2)1/2, n52(2vgV)/(vg

22V2), and

d522~vg
22V2!21/2S ~vg

21V2!

~vg
22V2!

Ã1B̃D ,

h524~vg
22V2!23/2vgVÃ,

Ã5A2
V2v0

2CD

~v0
22V2!

, B̃5B2
V2v0

2CD

~v0
22V2!

.



w

e

c

lu
b
.
pa
i
d

th

fo

o

to
ol

e
con-
e
o

the
or
is-
ent

sate

del
e

al

an

ed-

ith
iton

7150 PRE 59TAKESHI IIZUKI AND YURI S. KIVSHAR
We notice that in the problem under consideration,
should assumeuVu,vg and unu,2m.

Similar to the analysis presented in Ref.@10#, from Eqs.
~8!–~10! we obtain a closed differential equation for th
function u2 in the form of the double sine-Gordon~DSG!
equation. The DSG equation can be integrated, and its lo
ized solutions are two types ofkinksandantikinks@11#. Us-
ing the relevant solutions, we can then find

f ~z!5H 7~4m/d!@12~n/2m!2#

cosh~zA4m22n2!7~n/2m!
J 1/2

,

where the signs6 stand for the casesd.0 andd,0, re-
spectively. Functionsu1 andu2 are then obtained as

u25u12u2

522 tan21HA2m2n

2m1n
tanh71SA4m22n2

2
z D 71J ,

~11!

u15u11u252
nV

vq
z

6
4hvg

d
tan21FA2m6n

2m7n
tanhSA4m22n2

2
z D G1C6 ,

~12!

whereC6 are integration constants. In order to obtain so
tions for gap solitons, we restrict the possible angle varia
by the domain, 0<u2<2p. The solution obtained from Eq
~11! describes a two-parameter family of gap solitons, s
tially localized waves in the Bragg gratings, which are sim
lar to the gap solitons of the conventional coupled-mo
theory. Actually, by renormalizing the variables asA→
6s, B→61, C→0, uku→1, vg→1, V→v, V→
6A12v2cosQ, C6→(1/261/2)p6(4sva2)/(12v2)p
12f, we can demonstrate that the solution is essentially
same as that earlier obtained in Ref.@12#. However, the ef-
fect of the dc wave is included in the parametersd andh.

Similar to the case of conventional gap solitons@13#, in
the caseunu.2m, spatially localized solution of Eqs.~8! and
~9! do not exist. Instead, the kinks of the DSG equation
u2 give solutions fordark gap solitons~see also@13#!, lo-
calized waves on nonvanishing backgrounds,

f ~z!5A2m

udu S unu
2m

21D Aunu/2m cosh~sz!61

A~ unu/2m!cosh2~sz!21
,

where

s54mAunu
2m

21.

Upper and lower signs correspond to two types of such s
tons, with the maximum intensitylarge or smaller than the
background intensity.

The effective renormalization of the coefficients due
the induced dc field seems extremely important for the s
ton stability. Indeed, whenv0,vg the coefficients have a
e

al-

-
le

-
-
e
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r
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singularity providedV→v0, changing the character of th
dependence of the soliton parameters and the system
served quantities onV. The recent stability analysis of th
conventional gap solitons@14# revealed the existence of tw
types of instabilities,oscillatory and translational. The most
important, translational instability appears for largeV, so that
the induced dc field is expected to have a strong effect on
soliton stability. In fact, we anticipate that all gap solitons f
v0,V,vg may become unstable. However, the detailed d
cussion of the stability is beyond the scope of the pres
study. It is also worth mentioning that in the limitV→v0
when the coefficients grow, the transverse effect in Eq.~6!
becomes important and should be included to compen
the singularity.

Finally, we present the system invariants of the mo
defined by Eqs.~4!–~6!. Similar to some other models, w
are not able to present Eqs.~4!-~6! in a Hamiltonian form
directly, and therefore we introduce an auxiliary functionf
through the relationa]f/]z5E(0,0)2v0

2D(uE1u1uE2u2),
where a25v0

2D/C. Then, we define the second canonic
variable asc5v0

2]f/]t and show that Eqs.~4!–~6! can be
written as a Hamiltonian system

]f

]t
5

dH

dc
,

]c

]t
52

dH

df
,

]E6

]t
5 i

dH

dE6*
,

with the following Hamiltonian:

H5E
2`

1`

dzH v0
2

2
c22f

]2f

]z2
1kE1* E21k* E1E2*

1
ivg

2 S E1*
]E1

]z
2E1

]E1*

]z
2E2*

]E2

]z
1E2

]E2*

]z D
1

Ā

2
~ uE1u41uE2u4!1B̄UE2E1U2

1aC
]f

]z
~ uE1u21uE2u2!J , ~13!

where Ā5A1v0
2CD and B̄5B1v0

2CD. Other integrals of
motion of the system~4!–~6! are the field momentum,

P5E
2`

1`

dzH S E1

]E1*

]z
1E2

]E2*

]z D 22
]f

]z
cJ ,

the total number of the forward and backward waves, and
independently conserved number of the dc waves,

N5E
2`

1`

dz~ uE1u21uE2u2!, N05E
2`

1`

dzc.

Therefore, in sharp contrast to the conventional coupl
mode theory of gap solitons, the model~4!–~6! possesses
one additional integral of motion, and it has no analogy w
other soliton-bearing nonintegrable models where the sol
stability has been investigated so far.
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In conclusion, we have demonstrated the importance
the optical rectification effect in the theory of gap solito
propagating in periodic optical media with a quadratic no
linear response. We have derived, for the first time to
knowledge, a novel model of the coupled-mode theory
optical gap solitons in quadratically nonlinear Bragg gratin
that describes a coupling of the forward and backward wa
ne

B

ys
of

-
r
r
s
s

to an induced dc field, and we have found the analyti
solutions for moving bright and dark gap solitons.
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